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The process of admixture deposition from a turbulent flow for different values 
of the particle reflection coefficient from the wall is analyzed. A generaliz- 
ing formula is proposed for the computation of the deposition rate on a com- 
pletely absorbing surface in a broad range of variation of the particle inertia. 

A sufficiently significant quantity of publications, [1-5], say, is devoted to the 
computation of particle deposition on the surface of channels in turbulent flows. However, 
the complete theory that takes account sequentially of the different deposition mechanisms 
as a function of the particle inertia has not yet been constructed. In practice, there is 
not any analysis even of the influence of conditions of particle interaction with the wall 
(boundary conditions on the surface) on the deposition intensity. Certain models are ex- 
amined in this paper for the computation of the deposition in a broad range of variation of 
the particle size for different conditions of their interaction with the wall, taken into 
account by the reflection coefficient. 

The following system of mass and momentum balance equations for a solid disperse phase 
is obtained in [5] from the kinetic equation constructed for the probability density of the 
particle coordinate and velocity distributions in a turbulent flow 

o c +  o cry=o, (1) 
Ot Oxh 

OV~ . OV~ O(v~vs  U~--V~ D~ k OtnC (2 )  
Ot + vk ~ =  Ox~ + ~ "~ : Oxh " 

Here ' ' <ViVk > is the stress tensor in the solid phase that occurs because of particle involve- 

ment in the turbulent motion of the carrying gas flow and Brownian motion, and Dih----~[(vi'v~> 
+(T/z'f)r u~>] is the diffusion tensor. Without taking account of inhomogeneities of the 
average and fluctuating velocity fields described by the convective and diffusion terms in 
the balance equations of the second moments of the solid phase velocity fluctuations [5], 
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the quantity <ViVk> is determined by the expression 

D 6 , ( 3 )  
<~;~i'> =f<u;u~> +--4 ~ :i 

where  t h e  c o e f f i c i e n t  f c h a r a c t e r i z e s  t h e  d e g r e e  o f  p a r t i c l e  i n v o l v e m e n t  in  t h e  f l u c t u a t i n g  
m o t i o n  and h a s  t h e  fo rm f = 1 -- e x p ( - - T / x )  [ 6 ] .  

As t h e  p a r t i c l e  i n e r t i a  i n c r e a s e s ,  t h a t  i s  c h a r a c t e r i z e d  by t h e  p a r a m e t e r  "c/T, t h e  a c -  
c u r a c y  o f  t h e  e q u i l i b r i u m  ( l o c a l l y  homogeneous )  r e l a t i o n s h i p  (3 )  i s  l o w e r e d .  T h i s  c i r c u m -  
s t a n c e  a p p e a r s  t o  be  e s p e c i a l l y  n o t i c e a b l e  n e a r  t h e  c h a n n e l  w a l l ,  where  t h e  f l o w  becomes  
s u b s t a n t i a l l y  i nhomogeneous  on t h e  one hand s i n c e  t h e r e  a r e  l a r g e  a v e r a g e  v e l o c i t y  and 
t u r b u l e n t  e n e r g y  g r a d i e n t s ,  and t h e  p a r t i c l e s  t u r n  o u t  t o  be  r e l a t i v e l y  more  c o a r s e  b e c a u s e  
o f  t h e  d i m i n u t i o n  in  t h e  t i m e  s c a l e  o f  t h e  t u r b u l e n c e  T on t h e  o t h e r .  

T a k i n g  a c c o u n t  o f  (3 )  t h e  f o l l o w i n g  e q u a t i o n  f o r  t h e  p a r t i c l e  c o n c e n t r a t i o n  d i s t r i b u -  
t i o n  o v e r  t h e  c h a n n e l  s e c t i o n  i s  o b t a i n e d  f rom (1 )  and (2 )  f o r  h y d r o d y n a m i c a l l y  d e v e l o p e d  
s t a t i o n a r y  f l o w  
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Fig. i. Distribution of r.m.s, fluctuations of the radial 
gas velocity component over the channel section <u~2>i/2/u, 
in the near-wall domain (a) and in the flow core (b): i) 
[i0]; 2) [ii]; 3) [12]. 
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where  D T = T <.Url/2> i s  t h e  d i f f u s i o n  c o e f f i c i e n t  and q = ~ f / T  i s  t h e  m i g r a t i o n  c o e f f i c i e n t  

For  i n e r t i a l  p a r t i c l e s  t h e  d i f f u s i o n  c o e f f i c i e n t  in  (4 )  a g r e e s  w i t h  t h e  d i f f u s i o n  co -  
e f f i c i e n t  f o r  an i n e r t i a l e s s  a d m i x t u r e ,  wh ich  i s  i n  a g r e e m e n t  w i t h  t h e  known Chen t h e o r e m  
[ 7 ] .  However ,  in  c o n t r a s t  t o  t h e  o r d i n a r y  d i f f u s i o n  e q u a t i o n  f o r  an i n e r t i a l e s s  a d m i x t u r e  
t h e r e  i s  an a d d i t i o n a l  m i g r a t i o n  t e r m  in  ( 4 )  due t o  t h e  i n h o m o g e n e i t y  o f  t h e  f i e l d  o f  
t u r b u l e n t  c a r r i e r  f l o w  f l u c t u a t i o n s ;  where  a s  t h e  p a r t i c l e  i n e r t i a  grows t h e  r o l e  o f  t h e  
m i g r a t i o n  t r a n s f e r  m e c h a n i s m  r i s e s  and t h e  m i g r a t i o n  c o e f f i c i e n t  q grows f rom z e r o  t o  one 
as  t h e  r a t i o  z / T  i n c r e a s e s .  

The t u r b u l e n t  d i f f u s i o n  c o e f f i c i e n t  i n  ( 4 )  i s  e x p r e s s e d  in  t e r m s  o f  t h e  c a r r i e r  f l o w  
t u r b u l e n t  v i s c o s i t y  c o e f f i c i e n t  D T = VT/SC T, whe re  Sc T = 0 . 9 .  The c o e f f i c i e n t  o f  t u r b u l e n t  
v i s c o s i t y  i s  d e t e r m i n e d  f rom t h e  f o r m u l a  

%v 61 {-VI+4[I--exp(--y+/A)]2•  (5 )  

which goes over into the Reichardt formula far from the wall and into the van Driest rela- 
tionship [8] (K = 0.4; A = 26) as ~ + 0. 

The integral time scale of turbulence needed to calculate the migration coefficient q 
is given by the interpolation formula 

T+ = Tu~/~ = ]/T~o + l~ , ( 6 )  

that goes over into the relationship T+ = T§ 0 = const as y. + 0 (the value of the time scale 
of turbulence is ordinarily assumed constant in the domain of the viscous sublayer, for in- 
stance [9]) and into the relationship T+ = s = s far from the wall, where s is the mix- 
ing path length. The constant T. 0 is assumed to equal 10 while the quantity s is deter- 
mined from the Prandtl-Nikuradze formula 

l+ = •  1 ,1y+0 ,6~- -0 ,159- -~ ) .  

I n  o r d e r  t o  c o n f i r m  t h e  a p p r o x i m a t i o n  s e l e c t e d  f o r  T, t h e  e x p r e s s i o n  f o r  t h e  r . m . s .  
< .12>  fluctuations of the radial gas velocity component u_ = vT/TScT obtained from the rela- 

tion D T = VT/SC T = T<u~2> is compared with experimental data presented in [10-12]. It is 
seen that the results of the computations obtained by using (6) agree sufficiently well 
with the experimental data in both the near-wall domain and in the flow core. 

The boundary condition on the surface is obtained for (4) from the solution of the 
kinetic equation for the probability density in the near-wall domain and has the form [5] 

H 
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where the reflection coefficient X is defined as the ratio between the reflected and inci- 
dent particle fluxes. Therefore, from the viewpoint of particle reflection or absorption 
the p~sical properties of the surface are characterized by the coefficient X equal to the 
probability of recoil and return of particles colliding with the wall to the flow. 

It follows from (4)-(7) that the coefficient of deposition j+ = Jw/u,C0 can be repre- 
sented in the form of a functional dependence on the governing parameters as follows 

]+=F(~+, B, R+, %), 
where T. = xu~/v characterizes the particle inertia, B = (gpl/2p2)ZI26~plv3/kOu, is the in- 
fluence of BrSwnian diffusion on deposition (the par~eter B appers from the relationship 
for the Sc~idt number Sc = v/D = T~/iB); ~+ = Ru,/v is the flow Re~olds n~ber. The 
parameter x+ is the principal one, its value determines the role of the different mechanisms 
in the deposition process; the influence of the other par~eters depends on the range of 
variation of T+ and in certain domains of values of T+ can be lacking in practice. 

Let us first examine the case of very fine particles (x+ << i), when the influence of 
turbulent migration on the deposition can be neglected (i.e., we can set q = 0 in (4)) and 
a pure diffusion mode of deposition is realized~ Because of the large values of the Sc~idt 
n~ber (Sc >> i), a change in the concentration occurs in a thin diffusion layer whose thick- 
ness is much less than the dimension of the viscous sublayer. In this case, taking account 
of (5) and (7) there follows from (4) 

( • /i/4 23/2 

Sc~A z ~g~ZB3/4 
]+= 14 1+_____~. [ ] n z  '1/4 2~4  (8) 

Without taking account of the second term in the denominator, (8) agrees exactly with 
the formula presented in [13] for the mass delivery of an inertialess admixture for large 
Sc~idt n~bers 

( U2 )I/4 23/2 0 , 1 1 5  
]+= Sc~A z ~ 8 B a / 4  Sc3/4 (9) 

I t  is  seen from (8) tha t  the quant i ty  j+ is independent of the p a r ~ e t e r  R+. Moreover, 
s ince B >> 1 under r ea l  condi t ions ,  while z+ << 1 in the  case under cons ide ra t ion ,  then the 
influence of the reflection coefficient on the coefficient of deposition j+ appears only for 
values of X quite close to one. Therefore, for very fine particles on a non-reflecting sur- 
face (X ~ i) the dependence j+ = F(~§ B) holds. 

The results of a n~erical solution of the problem (4)-(7) are represented in Fig. 2 
in a sufficiently broad range of variation of the particle inertia for a circular channel; 
experimental data of different authors assembled in [14] are presented there. Since values 
of the turbulent gas stresses (and particularly the quantity <u~2> governing the diffusion 
coefficient DT) become quite small in the viscous sublayer domain while the fluctuating 
solid phase energy can correspond to the value at a certain distance from the wall because 
of the particle inertial path, i.e., can exceed the value given by (3) substantially, the 
utilization of the relationship (3) obtained for a homogeneous turbulent flow and being 
local in nature can result in incorrect results, in principle, near the wall. In order to 
take effective account of the inertial transfer mechanism of the fluctuating energy in the 
solid phase, we will give the boundary condition (7) at a certain distance from the wall Yw 
proportional to the length of the inertial path of the particles [15] ~ = au, x, where a is 
a constant. Computation directly at the wall results in sharp peaks in the concentration 
in the viscous sublayer which have no physical meaning. 

Results of a computation for a completely absorbing surface (X = 0) are sho~ for ~ = 
0.5 by solid lines in Fig. 2. It is seen that satisfactory agreement between the computed 
and experimental data hold in the range of variation of the particle inertia under consider- 
ation. The initial drop in deposition intensity as ~+ grows is related, according to (9), 
to the diminution in the Brownian diffusion coefficient. The rise in the coefficient of 
deposition as x+ grows for relatively inertial particles (~0.i) is explained by the 
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Fig. 2. Results of a numerical computa- 
tion of the coefficient of deposition (R§ 
= 5"104): i, 3, 4, 5) B = 106; 2) 2"105; 
1, 2) X = O; 3) 0.4;  4) 0.8;  5) 0.99. 

increase in the role of the migration transfer mechanism. The contribution of 
Brownian diffusion in this domain turns out to be negligibly small and, therefore, 
the quantity B is excluded from the number of governing parameters. Therefore, 
the mechanism of inertial particle deposition is determined by turbulent diffusion and turbu- 
lent migration processes due to inhomogeneity in the distributions of the concentration and 
velocity fluctuation fields. For not very coarse particles, when the condition ~§ << R+ is 
satisfied, i.e., when the particle inertial path length is much less than the channel 
radius, the quantity R+ is not a governing parameter and the coefficient of deposition is 
determined by the dependence j§ = F(T., X). In this domain of variation of ~+ the results 
of a computation for a completely absorbing wall can be approximated by the formula 

]+ = 2,5.10-~ ~ 5. (i0) 
When the quantity ~+ takes on values commensurate with R+, the influence of the parame- 

ter R+ becomes substantial and the model of the computation based on the representation 
y. = c~+ ceases to be suitable. 

The behavior of the coefficient of deposition as a function of the value of the parti- 
cle reflection coefficient is shown by dashed lines in Fig. 2. Attention is turned to the 
weak influence of X on j+ in the domain of small values of [+, which is in agreement with 
the solution (8) for very fine particles. As the particle inertia grows the influence of 
the parameter X on the deposition increases and the maximum in the dependence j§247 shifts 
towards lower values of ~+. Such a nature of the dependence of j§ on X has an obvious phys- 
ica I meaning, only inertial particles being reflected from the surface can leave the near- 
wall domain while fine particles must remain equally in the near-wall layer and, therefore, 
inevitably precipitate on the wall. 

Let us consider the deposition of coarse (very inertial) particles for ~+ >> I. It 
follows from an analysis of the characteristic scales in this case that the viscosity v 
ceases to be a governing parameter and, therefore, not the quantity ~+ but rather c 0 
= T+/R+ = ~u,/R should be the parameter characterizing the particle inertia. In this case 
the stresses in the solid phase are practically invariant along the channel length and can 
be found from the condition of integral balance between the second velocity fluctuation 
moments of the disperse and carrying phases 

I I 

D 0 

that replaces the local relationship (3) with f = T/z taken into account for ~/T >> i. For 
T/T >> 1 the particle transfer equation (4) reduces to the form 
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Fig. 3. Coefficient of deposition of 
coarse particles: 1-3) computation using 
(12) ;  1) X = 0; 2) 0 .4;  3) 0 .8 ;  4) [14];  
5) [16]; 6) [17]. 

dC r 
DTo =----Jw- (11) 

dr R 

Here 
! I 

DTo=x < v; 2 >o=2 J'T < u; 2 > 7 d 7 = 2  j" DTrdr, 
0 0 

where according to (5) 

3 ScT 

I n t e g r a t i n g  (11) wi th  the  boundary c o n d i t i o n  (7) taken  i n t o  account  we o b t a i n  
5• SeT 

/+ = 1 +Z 
I+ 1--X [,-6~% %) (12) 

A comparison between (12) and experimental data [14, 16, 17] on a completely absorbing 
surface, i.e., when (12) takes the form 

]+ = 5~/9 SeT = 0,25 (13) 
1 + (I0~• ScT)X/2 ~0 I/~ I + 1,25"~/2 " 

i s  shown by con t inuous  l i n e  in Fig .  3. 

I t  i s  seen t h a t  (13) agrees  s a t i s f a c t o r i l y  wi th  the  e x p e r i m e n t a l  d a t a .  The i n f l u e n c e  
of  the  r e f l e c t i o n  c o e f f i c i e n t  on the  d e p o s i t i o n ,  which i s  s u b s t a n t i a l  in c o n t r a s t  to  the  
case  of  f i n e  p a r t i c l e s ,  i s  shown by dashed curves .  Thus t he  d e p o s i t i o n  of  coarse  p a r t i c l e s  
i s  d e s c r i b e d  by the  dependence j§ = F(x+/R+, X). 

On the  whole, the  a n a l y s i s  performed i n d i c a t e s  t h a t  t h e r e  a re  t h r e e  c h a r a c t e r i s t i c  
d e p o s i t i o n  domains: f i n e ,  medium, and coarse  p a r t i c l e s .  The c o e f f i c i e n t  of  d e p o s i t i o n  on 
a comple te ly  absorb ing  s u r f a c e  i s  d e s c r i b e d  in t h e s e  domains,  r e s p e c t i v e l y ,  by (9 ) ,  (10) ,  
and(13) .  The f o l l o w i n g  approximate  formula  

0,115 
Ba/4 ,~8  -b 2,5.10-~$ '5 

(14) 
] + =  1 +  10-31:.]_' 5 -t -- l'25"lO-a'~- 

Rg2 
can be proposed as a generalizing dependence. 

Results of a computation using (14) are presented in Fig. 4 by dashed lines which cor- 
respond to (9), (i0), (13). It is seen that (14) agrees with the experimental data (assem- 
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bled in [14] and supplemented by [16, 17]) in the whole range of ~+ considered, where in 
conformity with the experimental data in the domain of small and large values of ~+ it 
describes the stratification of the dependence j+(~+) in the parameters B and R.. 

Therefore, (14) can be used to compute the deposition process in a broad range of vari- 
ation of the particle inertia. 

NOTATION 
I ! �9 �9 ~ ui, Ui, vi, V i are the fluctuatzng and average velocltles of the gas and solid phases; 

= 2p2a=/gplv is the time of particle dynamic relaxation; D = kG/6~pzva is the Brownian 
diffusion coefficient; v is the kinematic viscosity of the gas; a is the particle radius; 
Pz, P2 are the gas and solid phase densities; k is the Boltzmann constant; G is the temper- 
ature; r, y = R - r are coordinates in the radial direction; R is the channel radius; Jw is 
the particle flux being deposited on the wall; u, is the dynamic viscosity; C is the particle 

! 

concentration;i Co = 2STCd7 is the mean particle concentration over the channel section; 
0 

= y/R; ~ = r/R; y§ = yu,/v. The subscript w refers to parameters at the wall. 
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INVESTIGATION OF THE DEFOCUSING PROPERTIES OF 

A VORTICAL GAS FLOW 

P. A. Mikheev, V. D. Nikolaev, 
S. F. Shalaginov, and A. A. Shepelenko 

UDC 535.317.226:532.527 

Results are presented of measurements of the focal length of a gas lens formed 
in a swirling gas flow as well as during combustion of a glow discharge therein. 
An analytic dependence is obtained to estimate the focal length. 

i. At this time several papers [1-3] devoted to the creation of the active medium of 
a CO 2 laser on the basis of a glow discharge in a swirling (vortical) gas flow have been 
published. Under the action of centrifugal forces and heat liberation of the discharge in 
such a flow, the gas density in the central domain turns out to be less than at the circum- 
ference. The optical radiation of such a flow in the gas passing along the axis of rotation 
acts similarly to a scattering lens. The optical strength of this lens must be known for a 
correct selection of the laser resonator parameters. Moreover, such an apparatus is of in- 
dependent interest as a gas lens, for instance, to control the radiation of powerful lasers. 
It is proposed to use a swirling gas flow as a scattering lens in [4]. However, at this 
time there are neither theoretical nor experimental work in which the optical force of a 
gas lens of this kind was investigated. 

Results are presented in this paper of experiments to measure the optical force of a 
vortical gas lens and to study its dependence on the vortex flow parameters and the power 
liberated in the gas by an electrical glow discharge. Theoretical relationships permitting 
estimation of the parameters of the gas lens that occurs are also represented. 

2. Estimates of the focal length of a lenslike gas medium in a self-vacuumizing vor- 
tex tube (SVT) without a discharge can be carried out on the basis of the theory proposed 
in [5]. The dependence of the gas density on the radius in the vortex tube has the follow- 
ing form in a one-dimensional adiabatic flow approximation [5] 

l 

) p : p :  a + b ~-1, 

where 

a = ; b = %4 M2; 
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